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Lee waves in a stratified flow 

Part 1. Thin barrier 
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The lee-wave amplitudes and wave drag for a thin barrier in a two-dimensional 
stratified flow in which the upstream dynamic pressure and density gradient are 
constant (Long’s model) are determined as functions of barrier height and Froude 
number for a channel of finite height and for a half-space. Variational approxima- 
tions to these quantities are obtained and validated by comparison with the 
earlier results of Drazin & Moore (1967) for the channel and with the results of 
an exact solution for the half-space, as obtained through separation of variables. 
An approximate solution of the integral equation for the channel also is obtained 
through a reduction to a singular integral equation of potential theory. The wave 
drag tends to increase with decreasing wind speed, but it seems likely that the 
flow is unstable in the region of high drag. The maximum attainable drag coeffi- 
cient consistent with stable lee-wave formation appears to be roughly two and 
almost certainly less than three. 

1. Introduction 
We consider the excitation of two-dimensional lee waves in a stratified flow 

over a thin, vertical barrier on the basis of Long’s (1953,1955) model, in which the 
dynamic pressure and the vertical density gradient in the basic flow are constant. 
This problem has been considered previously by Drazin & Moore (1967), who 
obtained an essentially numerical solution for a barrier in a channel of finite 
height.$ It appears to be the only known solution of the lee-wave problem for a 
prescribed barrier of non-small height (linearized theory, in which the boundary 
condition on the barrier is applied at the ground plane, is applicable for suffi- 
ciently low barriers; see Yih 1965). We reconsider Drazin & Moore’s problem in 
order to develop analytical approximations to the lee-wave amplitudes and the 
barrier drag as functions of the dimensionless parameters 

d = .;rrh/H (1.1) 
and F E  l/k=.;rrU/NH ( K < k < K + l ) ,  (1.2) 
where h is the barrier height, H the channel height, N the intrinsic (Vaisala) 
frequency associated with the stratification, U the wind speed, F a Froude 

t Also Department of Aerospace and Mechanical Engineering Sciences. 
$ Jones (1967) has obtained a formally exact solution of Drazin & Moore’s problem 

for d = &7r, in which special case the Wiener-Hopf technique may be applied. He also 
considered the problem for a step (discontinuous change in height) in a finite channel. 
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number, k a reduced frequency, and K a non-negative integer. The lee-wave spec- 
trum of the channel contains K discrete modes. The range of physical interest 
appears to be roughly k = (0.5,5), but the disturbed flow may be unstable for 
sufficiently large kd (see below). 

We also present a solution for a half-space, a model that would appear to be 
appropriate for barrier heights that are small compared with the scale-height of 
the atmosphere and avoids the rather artificial boundary condition of a rigid 
upper boundary. An appropriate parameter for this limiting case, as well as 
for the qualitative discussion of the finite channel, is 

(1.3) 

The lee-wave spectrum for the half-space is continuous (this is a consequence of 
the assumed distributions of density and shear, as well as the geometry). The 
range of physical interest appears to be roughly K = (0,1.5). 

One of the striking features of stratified flow over a barrier, a t  least for an 
aerodynamicist, is the very large wave drag that is predicted by the theoretical 
models for non-small K. The meteorological implications of this wave drag have 
been considered by Sawyer (1959) and Blumen (1965) on the basis of linearized 
theory. Drazin & Moore obtained, but did not comment on, drag coefficients of 
several thousand for a thin barrier. The following extension of their calculations 
reveals that the drag coefficient for the thin barrier in a finite channel is an 
increasing function of the Froude number l/k, and hence also of the wind speed, 
for k in ( K ,  K + l), but exhibits discontinuous decreases (for increasing l / k )  
at integral values of k ;  in particular, C, = 0 for k < 1. This behaviour reflects 
the fact that the flow for k in ( K ,  K + 1) is subcritical with respect to the first K 
lee-wave modes and supercritical with respect to all higher modes. The corres- 
ponding phenomenon for a barrier in a half-space, with its continuous spectrum 
of lee-wave modes, is also anomalous: we find that the drag is a monotonically 
increasing function of K ,  and hence a monotonically decreasing function of wind 
speed, in the range considered. 

It is probable that phenomena not properly described by Long’s model are 
dominant for large K and prevent the attainment of the larger values of C,. 
Long’s (1955) investigation suggests that the flow is likely to be unstable for 
sufficiently large obstacles if E > 1; the appropriate measure of ‘sufficiently 
large ’ in the present investigation appears to be K,  and our results suggest that 
the critical value of K is roughly 1.5. The model of a thin plate also is open to the 
objection that the real flow over such an obstacle would separate, at  least locally 
(the turbulent wake may collapse at  a distance of the order of U / N  downstream 
from the barrier; cf. Schooley & Stewart 1963). This suggests that the local 
features of the predicted flow may not be realistic. It remains possible, neverthe- 
less, that the predicted, downstream lee-wave pattern and wave drag may closely 
resemble those which would be observed in a real fluid in some non-trivial range 
of K.  In any event, it  seems desirable to obtain solutions of the lee-wave problem 
for a few barriers of prescribed, albeit artificial, shape in order to assess the 
validity of approximate solutions for barriers of more realistic shapes. 

The analytical techniques that we invoke have their origins in electromagnetic 

K = kd = Nh/U.  
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diffraction theory, although they have been previously applied to such fluid- 
mechanical problems as slender-wing theory (Miles 1959) and surface-wave 
scattering by a step (Miles 1967). Perhaps the most important of these is 
Schwinger’s variational formulation, which we apply in $4 below to obtain 
relatively simple approximations to the lee-wave amplitudes. These approxima- 
tions appear to be adequate for the parametric range of interest (the approxima- 
tion for the channel is not uniformly valid for k + K + 1 - , but neither is the 
basic model). 

We also consider, in 9 5 below, an approximate solution to the integral equation 
for a finite channel. This formulation, which is based on a transformation of the 
original integral equation to a singular integral equation of the type that arises 
in thin-airfoil theory, leads to an infinite set of algebraic equations that must be 
solved by truncation. We find that K + 1 equations yield an adequate approxima- 
tion to the amplitudes of the K lee waves. Drazin & Moore’s formulation also 
leads to an infinite set of algebraic equations, of which they solved 150 on a 
high-speed computer. Our formulation is far more efficient in principle, but at  
the expense of analytically more complicated coefficients, such that it is not 
useful for large K .  

The boundary-value problem for a thin barrier in a half-space can be solved 
exactly by separation of variables, as in the well-known problem of diffraction 
by a plane ribbon. This solution, which we obtain in $6 below, culminates in an 
infinite series of Mathieu functions that converges quite rapidly for K < 6 and 
gives a firm basis of comparison for the variational approximation. A similar 
formulation is possible for a semi-elliptical obstacle, but the expansion co- 
efficients are coupled and can be determined only approximately by truncation of 
the resulting, infinite set of algebraic equations.? 

2. Long’s model 
The basic assumptions for Long’s model can be posed in the form 

P(Y) U2(Y) = 2q (2.1) 

and U(y) lN(y )  1 = F = l / k ,  N(Y) = { - SP’(Y)/~P(Y)% (2.2) 

where p(y) and U(y) are the density and wind speed in the undisturbed flow, Zy 
is the elevation, 1 is a characteristic length, q is a constant dynamic pressure, and 
P is the Froude number based on 1. [The corresponding Richardson number, 
Ri E (N/U’)2 ,  is proportional to F2/M4, where M is the Mach number if 1 is the 
scale height of the atmosphere; M < 1 by hypothesis, so Ri > 1 for the undisturbed 
flow.] The velocity, density, and pressure fields can then be expressed in terms 
of the vertical displacement of a streamline, say ZS(x,y) relative to its position 
in the undisturbed flow, according to 

u = U(y-S){l-SJ, v = U(y-S)S,, p =p (y -6 ) ,  ( 2 . 3 a 7 b , c )  

and p = p0-9 (S~+S~+k2S2-2Sy) ,  (2.4) 

t I hope to  present the results for the special case of a semi-circle in a sequel (part 2) 
to the present paper. 
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where subscripts denote partial differentiation with respect to the dimensionless 
Cartesian co-ordinates x and y, po  = po(y )  is the pressure in the basic flow, and 6 
satisfies the Helmholtz equation 

VZ6+ k26 = 0. (2.5) 

The drag on the barrier is given by the momentum integral 

7 

J. 

H -  
h 

6= 0' 

where C is a contour that encloses the barrier, and the positive sense is counter- 
clockwise. Substituting (2.3) and (2.4) into (2.6) and invoking conservation of 
mass, we obtain 

{(6~-6~+k262)dy-26,6,dx). (2.7) 

S = O  

8 (c) 8 (0) 

a=Y 

S = O  

The boundary-conditions for a thin barrier of height h = dl in a channel of 
height H = n-1 (figure 1) are 

W , y )  = y (0 < y < d )  (2.8) 

and 6(x, 0) = 6(x, 7T) = 0. (2.9) 

In  addition, we invoke the requirement of no upstream (x+ -00) reflexion 
(see below) and require 6 to be bounded and continuous in the physical domain. 
As a particular consequence of this last requirement, we invoke the edge condi- 
tion 

in order t o  rule out eigensolutions with physically unacceptable singularities 
(cf. Rayleigh 1897; Van Dyke 1964, p. 53). We call attention to the analogy with 
the leading-edge condition that must be invoked in thin-airfoil theory and 
anticipate (see $5 below) that it also may be necessary to impose a smoothness 
condition at the stagnation point (x = y = 0) that is analogous to the Kutta 
condition at  the trailing edge of an airfoil. 

We find it expedient, in discussing the boundary conditions at infinity, t o  
resolve 6(x, y) into odd and even functions of x, say W ( x ,  y) and 6(O)(x, y), such that 

lVS[ = O[(Z2+ (y-d)2)-4] (x+O,y-td) (2.10) 

w, Y) = Jce)( 1x1 , Y) + 6(O)( 1x1 , y) sgn x, (2.11) 

where both cYe) and 6 ( O )  satisfy (2.5) and (2.9). Invoking the requirements that 6 
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be continuous across x = 0 in y = [O,n] and that 6, be continuous across x = 0 

and 6(e)(0,y) = y (0 6 y 6 d) ,  6$)(O,y) = 0 (d < y 6 n). (2.13a,b) 

We remark that (2.10) permits 

6$)(O,y) = O(d-y)-4 ( y + d - ) .  (2.13 c) 

Let B denote the boundary, and S the interior, of the semi-infinite strip 
x > 0,  0 < y < n. Then S ( O )  satisfies the homogeneous differential equation (2.5) 
and the homogeneous boundary conditions (2.9) and (2.12) on B and must be 
bounded and continuous in S; accordingly, it must either vanish identically or 
be an eigensolution, namely a gravity wave (or, more generally, a set of gravity 
waves). 

The solution S(e) satisfies inhomogeneous boundary conditions on B and there- 
fore can be resolved into a component that satisfies these boundary conditions 
and may comprise gravity waves and, in addition, an eigensolution, which can 
comprise only gravity waves. The gravity-wave portion of the solution, if it 
exists, dominates the asymptotic behaviour of 6(@, and the amplitudes of the 
eigensolutions in both 6(0) and S(e) then are determined by the requirement that 
the gravity-wave components of S(e) and 8 0 )  cancel one another identically as 
x+ - co. We infer from these considerations that 

6(0)(x, y) N 6(")(z, y) (x+co) (2.14) 
and S(x,y) - 26(0)(x,y) (x+co) (2.15) 

unless S(O) vanishes identically, in which case S(e) is determined uniquely by the 
boundary conditions on B together with the requirement that the solution be 
bounded. 

The preceding considerations provide a heuristic basis for the existence and 
uniqueness of a solution to the boundary-value problem posed by (2.5), (2.8)- 
(2.10) and (2.14). There remains the question of stability. 

in Y = (6 we obtain ( yO) (O,  y) = 0 (0 6 y < .) (2.12) 

to be singular like 

Long (1955) asserts that a necessary condition for stability is 

6, 6 1 (2.16) 

at every point in the flow. The essential argument is that 6, > 1 implies static 
instability (ap/ay > 0 )  by virtue of ( 2 . 3 ~ )  and the basic assumption p'(y) < 0;  
it also implies u < 0, and hence the existence of closed streamlines, by virtue of 
( 2 . 3 ~ ) .  Long also points out that (2.16) is not a sufficient condition for stability 
owing to the possibility of dynamical (shearing) instability of a statically stable 
flow, but concludes that the possible differences in the parametric stability 
criterion are likely to be small. In  fact, static stability is only typically, but not 
always, a necessary condition for the dynamic stability of finite-amplitude 
disturbances, so that Long's assertion of the necessity of (2.16) must be regarded 
as plausible rather than certain. We adopt the point of view that its violation by 
the lee-wave field (2.15) casts serious doubt on the physical significance of that 
field. We shall not consider its relevance for the immediate neighbourhood of 
the barrier, where the neglect of viscosity in the basic model already casts doubt 
on the physical significance of the local field. 
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3. Barrier in finite channel 
We now consider the solution of the boundary-value problem posed by (2.5), 

(2.8)-(2.10) and (2.14). Pursuing the analogy with thin-airfoil theory, we regard 
the barrier (x = 0, 0 < y < d )  as a vortex sheet of strength 

Introducing the Fourier representation 

where 

( 3 . 1 ~ )  

(3.lb) 

(3.3) 

and posing a similar expansion for S@), we find that the most general solution 
of (2.5) that is even in x, satisfies the boundary conditions (2.9), (2.13b) and 
(3.1 b) ,  and is bounded and continuous in 8, is given by 

K m 

1 K+l 
6(e)(x, y) = X {C, cos (k, x) - k, lG, sin (k ,  I x I )} sin ny + I: a; lG, e-anizl sin ny, 

(3.4) 

where k ,  = (k2-n2)*, a, = (n2-k2)* ( K  < k: < K +  l), (3.5) 

K is the integral part of k ,  and the C, are the (as yet) undetermined amplitudes 
of the gravity waves that make up the even eigensolution. Similarly, invoking 
(2.12) in place of (3.1 b), we obtain the odd eigensolution 

K 

1 
S(O)(x,y) = XS,sin(k,x)sinny. (3.6) 

Invoking (2.14), we obtain 

C, = 0, S ,  = -k,lG, (TZ = 1, . . ., K ) .  (3.7a, b)  

Substituting (3.3) and ( 3 . 7 ~ )  into (3.4) and invoking (2.13a,b), we obtain 

and 

where 

( 3 . 8 ~ )  

(3.8b) 

(3.9) 

We note that the above Fourier series cannot be expected to converge uniformly 
in the neighbourhoods of any of y = 0, d and ?T. 

The preceding formulation is equivalent to that of Drazin & Moore after 
allowing for the following changes of notation: T = H ,  A, = Ik,l = Ian\ and 
A,A, = G,. We anticipate that the G ,  remain bounded at  both k - t  K + and 
k -t K + 1 - and therefore provide a more satisfactory basis for calculation than 
do the 8, (since S K + m  as k - t K + ) .  
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Substituting 
K 

1 
6 N - 2 k;l G, sin (k,x) sin ny (3.10) 

into (2.7) after choosing C as the rectangle y = 0, n, x = - 00, + co, we obtain 
the barrier drag coefficient - 

61 

1 
C, = (qh)-lD = (27~/d) Gi, (3.11) 

which vanishes identically for k < 1 and exhibits finite discontinuities at  
k = 1,2, . . . (see 554 and 5 below). Invoking (2.16) for the lee-wave field, we obtain 

(3.12) max -2~nk,1Gnsin(k,x)cosny < 1 I h’ L 
as the necessary condition for static stability. If K = 1, (3.12) implies 

G, < *(k2-  I)*, C, < * d - 1 ( k 2 -  1) (K  = 1). (3.13 a,  b )  

Explicit solutions of (3.12) are not possible for K > 1; however, a fair approxima- 
tion, and certainly a necessary condition, is given by 

G, < *K-l(k2 - K2)*. (3.14) 

Arbitrary obstacle 

The preceding development provides the Green’s function for an obstacle of 
arbitrary shape in a channel of finite height. Let G(x, y, f ; ,  y) satisfy 

and 

(3.15) 

(3.16) 

(3.17) 

where 6, is Dirac’s delta function. Applying Green’s second theorem to 6(x, y) 
and G around a closed contour made up of the obstacle, y = 0 outside of the 
obstacle, y = 77 and x = k 00, we obtain 

(3.18) 

where n is the outwardly directed normal to the obstacle. We infer from the 
preceding development that the solution to (3.15)-(3.17) is given by 

(3.19) 

where H is Heaviside’s step function. Substituting (3.19) into (3.18), choosing 
(5, y) on the obstacle, and setting 6(x, y) = y and a((, y) = 7, we obtain an integral 
equation €or the determination of a6lan on the obstacle. The solution of this 
integral equation would permit the determination of 6(x, y) from (3.18). 

I Ii al 

nG(x, y, f ; ,  y) = - 2H(x - f ; )  k n l  sin kn(x - f ; )  + C. a;l ecaJz-C1 sin ny sin ny, 1 1 K + l  
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4. Variational approximation 

and vanishes identically in y = (d, 7r). Substituting 
Let g*(y) be a trial function that is continuous in y = (0, d ) ,  satisfies (2.13~)' 

g(Y) = Cg*(y) (4.1) 

into (3.8u), multiplying both sides of the result by g*(y), and integrating over 
y = (O,d) ,  we obtain 

where GZ = ( 2 / n )  g*(y)sinnydy. 
J O d  

(4.3~~) 

(4.2b) 

(4.3) 

The corresponding approximation to G, is 

G, = CCZ. 14-41 

We may associate the approximation provided by (4.1)-(4.4) with the varia- 
tional integral 

which is stationary with respect to first-order variations of g*(y) about the true 
solution to ( 3 . 8 ~ ~ ) .  We could use this variational principle to obtain systematic 
approximations to g(y) ; however, we rest content with the direct approximation 
of (4.1)-(4,4) on the basis of an assumed form for g*(y). We may demonstrate, on 
the basis of the rather more general variational formulation developed in the 
appendix, that the error in the approximation (4.4) is of the order of the square 
of the error in the trial function 9". 

A suitable trial function for small kd is provided by the solution of Laplace's 
equation for a barrier in a half-space [the complex potential is ((x + i ~ ) ~  + d2)*], 
which yields 

Substituting (4.6) into (4.3)-(4.4), we obtain 

g"(y) = y(d2-y2)-4. (4.6) 

where J1 is a Bessel function. The corresponding approximation to CD, as deter- 
mined from (3.11)' is 

We observe that C --f 0 as Ic -+ K + 1 - (the results of the following section reveal 
that G ,  and C, actually have finite values a t  k = K +  1 - ) and then jump 
discontinuously to positive values as k increases through K + 1. 
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The approximations provided by (4.7) and (4.8) for d = &r are plotted in 
figures 2 and 3. The criterion (3.12) is violated in 1 < k < 1.24 for K = 1, in 
2 < k < 2.85 for K = 2, and throughout almost the entire range 3 < k < 4 
for K = 3. The physical significance of the results in these ranges is dubious, but 
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we have included them for numerical comparison with the corresponding points 
calculated by Drazin & Moore. We infer from this comparison that the error in 
G, at k = K + &  and d = is roughly 10K-2yo. The approximation provided 
by (4.7) for K = 1 and d = in is plotted in figure 4. It differs from Jones's (1967) 
result by approximately 2& % at k = 1.5; however, (3.12) is violated throughout 
1 < k < 2. The variations of Gn and C, with d for fixed k are shown in figures 
5 and 6 (the variational approximation appears to be less accurate than that of 
95 below for d / n  > 0.4, and figures 5 and 6 actually are based on the results 
obtained there; the differences between the two approximations are less than 
1 yo for a/;. < 0.4). The maximum values of K consistent with laminar flow appear 
to  lie between 1 and 2 [the critical values of K calculated by Long (1955) for 
obstacles that approximate truncated sine waves are roughly unity]. We sur- 
mise that drag coefficients substantially greater than two or three are not likely 
to  be attainable in laminar flows. 
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The limiting forms of (4.7) and (4.8) as d -+ 0 with k fixed are 

G,-+4nd2 (d+O) (4.9) 
and c,++~K(K + Q) ( K  + 1)a3 (d+ 0). (4.10) 

The result (4.9) yields a solution equivalent to that given by Drazin & Moore for 
a dipole of strength ,u = $mi2 or, equivalently, a small, semicircular barrier of 
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height h/42.  There is, however, a numerical discrepancy in the corresponding 
result for C,, which appears to be associated with an error in Drazin & Moore's 
calculation. We find that their result (5.8) for the drag on a dipole should be 
multiplied by (4/n4) and that their result for the drag on a small, semicircular 
barrier of radius A should be multiplied by 4. 
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The limiting forms of (4.7b) and (4.8) as k+oo with kd fixed, corresponding to a 
thin barrier in a half space (figure 7),  are 

and 

(4.11) 

(4.12) 

b 

FIGURE 4. G, for K = 1 and d = +m, as given by the variational approximation (4.7) and 
the Galerkin approximation (5.14). The circle denotes a value calculated by Jones (1967). 
The stability criterion (3.12) is violated over the entire range 1 < b < 2. 

where K = kd is defined as in (1.3). Introducing Neumann's integral representa- 
tion for J:(v) in (4.11) and evaluating the resulting integral with respect to Y, 
we obtain the alternative representation 

C = - 2  (K2-vz)-*Jl(v)Yl(v)dv , (4.13) 

which is preferable t o  (4.11) for numerical evaluation. Introducing the series 
representations for J: and J,Yl, we obtain 

( 1: )1 

C-l = 1 - ( 4K)2(10g %K + y + $) + s( &~)~(lOg 4K- y - $) + o{( 4K)'lOg K }  (4.14) 

and c, = +.rrK3c2p - g ( + K ) 2 +  ~ ( 4 4 4  + 0 ( * ~ ) 6 }  (4.1 5 a )  
(4.15b) 

The approximation (4.15b) is exact to the indicated order by virtue of the varia- 
tional principle and the fact that the error in the approximation g = g* is 
1 + O ( K ~ ) .  The limiting drag coefficient implied by (4.15), namely C, = +7nc3, is 
equivalent to that given by (4.10) in the joint limit K+m, d+O. 

= +nK3{1 + .p(iogaK + y - h) + 0 ( ~ 4  log2 .)I. 
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The approximation (4.12) is plotted in figure 8, together with the result ob- 
tained from the formally exact solution of $ 6  below. The two results are in- 
distinguishable, in the scale of the drawing, for K < 2.8, which appears to cover 
the range of physical interest (see below). The restriction corresponding to 

(4.16) 
(3.12) is 

max { - 2 1: - v2)f J1( v) sin [ ( K ~  - v2)9x] cos vy dv < 1. I 
so 
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FIGURE 5. G, for k = 1.5, as given by (5.14), and GI and G, for k = 2.5, as determined by 
truncating (5.11) at = 3. The circles denote values calculated by Drazin & Moore. The 
stability criterion (3.12) is violated over the dashed portions of the curves. 

The integral is intractable, but we obtain an upper bound by replacing the trigo- 
nometric product by - 1 ; the corresponding, lower bound to the critical value of 
K is 1.25. Referring to figure 5, we find that the critical values of kd for the finite 
channel are 1-47 and 1-50 for k = 1.5 and 2-5, respectively (our choice of these 
intermediate values of k tends to minimize the effects of the discontinuities a t  
integral values of k). We surmise from these considerations that the critical value 



Lee waves in a stratijied $ow. 1. Thin barrier 56 1 

d l n  

FIGURE 6. C D  vs. dln,  as determined by truncating (5.11) at r~ = 2 for K = 1 and a t  
TI. = 3 for K = 2. The stability criterion (3.12) is violated over the dashed portions of the 
curves. The circles denote values calculated by Drazin & Moore. 

U 

Y t.-;. - 
h 

q =  --1, v = f 7 l  J - X  

FIGURE 7. Thin barrier in half-space. 

36 Fluid Meoh. 32 
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of K for the half-space is roughly 1.5; it  is almost certainly less than two. The 
corresponding drag coefficient is roughly two and almost certainly less than three. 
(See note a t  end of $ 6  below.) 

We infer from these last results (together with the supporting results of 
$6 below) that not only CD, but also C,/K~ (to which the drag is proportional as 
U varies), are monotonically increasing functions of K in the range of laminar 
flow. This implies the anomalous result, anticipated in § I ,  that the drag de- 
creases monotonically with increasing speed. 

0 1 2 3 

K 

FIGURE 8. C D  us. K for the barrier of figure 7, as determined by the variational approxi- 
mation (4.12) and by (6.16). The two results differ only for K > 2.8, where (4.12) under- 
estimates the theoretical drag. The associated flow is likely to be unstable for K > 1-7. 

5. Reduction of integral equation 
We now obtain an approximate solution to the integral equation ( 3 . 8 ~ ~ )  by 

transforming it to a corresponding integral equation of potential theory [cf. 
the ' equivalent-static method' of wave-guide theory (Marcuvitz 1951, p. 153)]. 

We begin by separating out the static (k = 0 )  portion of (3.9) according to 
W 

K(y, 7) = K O  (y, y) - (2/n) )3 n-l en sin ny sin ny, (5.1) 
1 



Lee wave8 in a stratijed $ow. 1. Thin barrier 563 

where 
m 

K,(y, y) = (2/?r) n-Isin ny sin ny 
1 

(5.2a) 

(5.2b) 

and en = 1 (n = 1, ..., K )  (5.3a) 

(5 .3b )  

Substituting (5.1) into (3.8a) and differentiating the result with respect to y, we 

= 1 - na;l = 1 - { 1 - (k/n)2}-* (n 2 K + 1). 

obtain 

where 
a3 

f( y) = 1 + C E ,  G ,  cos ny, 
1 

and, here and subsequently, the Cauchy principal values of improper integrals 
are implied. Anticipating that (5.4) may yield solutions that are singular at  the 
end points (y = 0, d )  in consequence of the preceding differentiation, we add to 
( 3 . 1 3 ~ )  the additional requirement that g(y) be bounded at y = 0 (in fact, it  
must vanish there); accordingly 

and 

(5.6a) 

(5.6b) 

The singular integral equation (5.4), which arises in both thin-airfoil and 
slender-wing theories, as well as in other branches of mathematical physics, 
can be inverted with the aid of the joint transformation 

cosy=acosB+l-a ,  cosy =acos$+l -a ,  a=sinZ+d (5.7) 
m 

s=o 
and the expansion g(y) = csc e I= 3s cosso. 

The leading term in (5.8), 

3, csc e = ~ , a ( i  - cos y)-qcos - cos a)-*, (5.9) 

is a singular eigensolution of (5.4), and '9, must be determined by the auxiliary 
condition (5.6a), which now appears as the analogue of the Kutta condition in 
airfoil theory, The required inversion is (cf. Soehngen 1939) 

(5.10a) 

1 - eos 
y-)* j: (5.10b) 

Substituting (5.5) into (5.10a), multiplying both sides of the result by 
(2/77m) sin my, and integrating over y = (0 ,  d) ,  we obtain 

m 

m-lGm-ZenIm,Gn = Imo (m = 1,2, ...), (5.11) 
1 

n sin my 
where Imn = Inm = ~ ~ 

(1 + cos $) cosnyd$ . (5.12) 
2a 1 (l-c0sO)d6/~ cos $ - cos 0 m7r2 0 siny 
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We note the particular values 

11, = 131 = a(l-a)2(2-5a) ,  122 = * - i ( l - ~ 6 ) ~ - 4 a ~ ( l - a ) ’ ,  (5.13) 

123 = 132 = 2 a ( l - ~ ) ~ ( 1 - 4 ~ + 6 ~ ~ ) ,  

1 3 3  = Q-g( l -  a)6 - a2( 1 -a)’( 12 - 36a + 33~~’) .  1 
I,, = 2u, I,, = 2a( 1 -$a), I,, = 2a( 1 - 4a + +2), 

Ill = l - ( l - a ) 2 ,  I,’ = 12, = 2a(l-a)2,  

We may obtain approximate solutions to (5.11) by truncation, anticipating 
that convergence will be much more rapid than in Drazin & Moore’s application 
of Galerkin’s method by virtue of our prior separation of the limiting result for 
k = 0. Truncating at n = 2 with K = 1, we obtain 

The result (5.14) is in close agreement with the variational approximation of 
(4.7) except in the neighbourhood of k = 2 -  , where it correctly yields a non- 
zero value of G,. The two approximations for d = @ are compared in figure 4 
(they cannot be distinguished, on the scale of figure 2 ,  for d = 2.). They appear 
to be of comparable accuracy at  k = 1.5, where each differs from Jones’s (1967) 
result by approximately 2 i  yo. 

We also have obtained an approximate solution to (5.11) for K = 2 by truncat- 
ing at  n = 3. The results are again close to the variational approximation of 
(4.7) and (4.8) for d = &n, except in the neighbourhood of k = 3 -. They are 
quite superior to this variational approximation for d l n  substantially greater 
than 0.4 and were used for the computation of figures 5 and 6. 

6. Barrier in half -space 
We now consider a thin barrier of height h = 1 in a half-space, as shown in 

figure 7. This configuration is equivalent to that of $$2-5 above in the limit 
H +oo with kd = K fixed. The formulation of $ 3  could be carried over by trans- 
forming the Fourier series to Fourier integrals; however, the solution through 
separation of variables is more direct. 

Introducing elliptic co-ordinates [ and y according to 

x = sinh [ sin y, y = cosh 5 cosy, 

S,, + 677 + K2(cosh2 6 - cos2 7) 6 = 0, 

(6.1) 

(6.2) 

and writing 6 = 8(6, y), rather than 6(x, y), we transform the boundary-value 
problem Of 3 to 

S(e)(g, & 477) = 0, 6(“)(0,y) = cosy, (6.3a, b )  

and 8(o)(g, * in) = 6(0)(,$, 0) = 6(0)(0,1) = 0. (6.4a, b, c) 

Separating variables, we find that the most general even (in y)  solution of (6.2) 
that satisfies (6.3cc,b) is given by 

m 2  

n=Oi=l  
s(e)(6,9) = c c c~~+1Mc~~+1(5 )ce2n+~(y ) ,  (6.5) 
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where ce2n+l(7) is an even, periodic Mathieu function, MCVA+~(C) is the corres- 
ponding radial function of the j th  kind, and 

Our notation for the Mathieu functions is that of Abramowitz & Stegun (1964) 
with q = therein. 

Similarly, the most general odd solution of (6.2) that satisfies (6.4a, b ,  c )  is 

given by m 

1 
6") = z c2nM42(Ose2n(7), (6.7) 

where se2, is an odd, periodic Mathieu function, Ms&([) is the corresponding 
radial function of the first kind, and C2, is to be determined by the requirement 
(2.14). 

The leading terms in the asymptotic expansions of M C ~ L + ~  and MsL2 for 
K cosh [-+ co are given by (Abramowitz & Stegun 1964, p. 740) 

Ms$!~([) N - McL~+~(C)  N ( - ),(in, cash t)-f cos ( K  cash -in) (6.8) 
and 

Substituting (6.8) and (6.9) into (6.5) and (6.7) and invoking (2.14)) we obtain 

M C ~ % + ~ ( [ )  N ( - ),(&n~ cosh c)-* sin ( K  cosh 6 - in). (6.9) 

Invoking the orthogonality of the se2,(7), which constitute a complete set in 
7 = (0, &n), we obtain 

m fn 

c2m = ( - ~-1 (4 /n )  c ( - )"cB+~/ se2m(7)ce2n+1(7) dq. (6.11) 

Substituting (6.6), (6.8) and ( 6 . 1 0 ~ )  into (6.5) and invoking (2.15), we obtain 

n=O 0 

the asymptotic approximation to the lee wave(s) in the form 

6 N B(~r)-&cos (Kr-$n)F(T) (cosh[+r+co, 0 < 7 < in), (6.12) 

where F(7)  = Z ( -  )"4n+l(~)ce2n+1(7)) (6.13) 

F, = - ( 2/n)3Ajn) /Mc$)( 0) ( 6 . 1 4 ~ )  

(6.15) 

fe,n and ge,n are the joining factors for the radial solutions, and r is the cylindrical 
radius from x = y = 0. 

Substituting (6.12) into (2.7) and choosing C as the semicircle bounded by 
7 = T +r and r+m, we obtain [note that 6 N o(r-f)  in 7 = ( - in-, O ) ]  

00 

0 

- - A 1 (n) Se,mlfe,n,  

C, = (qh)-lD = 4~ F2(y) sinydy. su"" (6.16) 

Using the tabulated values of Ag),  f,,, and g,,, we find that the approximation 

P(7) = (F1A~'-P,A',3))CoSy+ (F1AA$'-P,A$)cos3y (6.17) 
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yields an accuracy of about 1 yo in the corresponding approximation to C, for 
K < 6 (although, as estimated in $ 4  above, the flow for K > 1.5 is likely to be 
unstable). We also may obtain F(7)  and C, as expansions in K~ and KnlogK. 
The expansions of A\”) and ce, converge quite rapidly for K < 4, but the expan- 
sion of Hc‘,2)(0) converges very slowly for K > 1, so that the results are not too 
useful for computation; however, they do confirm the variational approxima- 
tion (4.15b) to the indicated order. [Note added in proof: Mr. H. E. Huppert has 
used the results of this section to establish that (2.16) is violated for K > 1.73. 
The corresponding value of C, is 2-26.] 

7. Conclusions 
We conclude that the approximate methods considered in $9 4 and 5 above are 

adequate for the calculation of lee-wave amplitudes and wave drag within the 
regime in which Long’s model appears to be valid, namely NhlU < 1.5. We 
also conclude that the drag coefficient for a thin barrier in a stratified, laminar 
flow is not likely to exceed two or, at  most, three. 

This work was partially supported by the National Science Poundation under 
Grant GA-849 and by the Office ofNaval Research under Contract Nonr-2216(29). 

Appendix. Variational formulation 
Let gn(y) be determined by 

jodx(y,n)gn(v)dv = sinny (0 6 y < d )  (A la)  

and gn(y) = 0 (d < 9 6 n); (A 1 b )  

g(Y) = CI Yngn(Y)’ (A 2) 

then the required solution of (3.8a, b )  is given by 
W 

n = l  

where Y, is the finite sine transform of y, defined as in (3.2) and (3.3). We also 

introduce d 

0 
Gmn = (2/n) j gm(y) sinnydy, (A 3) 

the finite sine transform of g,(y). Multiplying (A la)  through by (2/n)gm(y) and 
integrating over y = (0, d ) ,  we obtain the alternative expression 

which is stationary with respect to independent, first-order variations of each 
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of g,,(y) and gn(y)  about the true solutions to (A l a ) ,  symmetric in m and 7 ~ ,  

and invariant under independent scale transformations of g,  and gn. 
The simplest variational approximation is provided by the substitution 

g m b )  = g n k )  = g * k ) ,  (A 6) 

where g*(y) is a trial function that is continuous in y = (O,d), satisfies (2.13c), 
and, by definition, vanishes identically in y = (d,n-). Substituting (A 6) into 

(A 5 ) ,  calculating m 

Gm = CI GmnYn, (A 7) 
n= 1 

and simplifying the result with the aid of Parseval's theorem, we obtain (4.2)- 
(4.4). Invoking the above variational principle for the individual GwLn, we 
find that the approximation to G, provided by (4.2)-(4.4) is stationary with 
respect to first-order variations of g*(y) about the true solution to ( 3 . 8 ~ ) .  
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